If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+x-33=0
a = 2; b = 1; c = -33;
Δ = b2-4ac
Δ = 12-4·2·(-33)
Δ = 265
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{265}}{2*2}=\frac{-1-\sqrt{265}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{265}}{2*2}=\frac{-1+\sqrt{265}}{4} $
| 3z+1+z+7=180 | | 3x+3(x+7)=27 | | -22=6(u-2)-8u | | 2x+3=(1/2)(5x-14) | | 7(y+4)+7y=-14 | | Y^2-2y-783=0 | | A=50x15 | | 1/2(5x-14)=2x+3 | | 175=-w+242 | | 10-w=295 | | 3/2x-1=2/5 | | 136=177-w | | 8x+18=6x+28 | | s=0.35s+27.24 | | 140=14k | | -13d+15=-4(2d–5) | | 2y-1=y=11 | | -22=8x-6 | | 12x+4=480 | | 21+x=58 | | 11x−3=12−4x | | 1/3x=1.3 | | 17=2+5u | | 1x-6=7 | | -37=-x/4 | | 9x-12=-3x+6 | | 10q-28=62 | | 7x+3=4x-21* | | x/27-4=-5 | | 11−(−3+x)=10 | | -u/4=-53 | | a/26+13=12 |